Appendix to University Commons Final EIR

August 20, 2020

Introduction
On August 18, 2020, the Davis City Council passed a motion to approve the University Commons project at a reduced building height with a five floor maximum and other project adjustments, with direction for staff to bring back final approval documents (e.g., revised Development Agreement, revised CEQA Resolution) at the next meeting (August 25, 2020), which would reflect Council’s motion. In support of the revised CEQA Resolution, this Appendix to the Final EIR has been prepared to provide substantial evidence that the revised project would not affect the adequacy of the EIR analysis, and that the impacts from the revised project are within the scope of that which was studied in the EIR.

Summary of Project Revisions
The project revisions can be summarized as follows:

- Maximum building height revised from 80 feet down to 72 feet (to the highest floor plate); and a maximum of five floors of retail and residential uses, consisting of:
 - One-story retail podium with the parking structure located behind the retail uses. The retail podium may contain one or two retail levels.
 - Up to four stories of residential uses located above the retail podium. However, in no case shall the building exceed 5 floors of combined retail and residential uses.
- Subject to final design, the total retail square footage, not including the existing 13,200-sf Trader Joes building, could range from 112,800 sf to 136,800 sf of retail uses (the EIR analysis assumed a maximum of 136,000 sf of retail uses).
- Consideration of a gated pedestrian access to the project site from the north to maintain existing access.
 - The access shall be considered in the detailed site design, which is required as part of the Final Planned Development and Design Review application.
 - The ultimate inclusion of a pedestrian gate shall be evaluated in light of potential issues relating to location, land use compatibility, noise attenuation, lighting, hours of operation, safety and security.

Note that the following primary components are expected to remain unchanged:

- 412,500 sf for the residential square footage and would be the same with 894 total beds in approximately 622 bedrooms and 264 units.
- 246,000 sf for the garage square footage would be the same.
- Proposed vehicle parking to remain the same.

The following section of this Appendix provides a discussion of those CEQA topics identified in the EIR as having significant project impacts. The discussion identifies whether the above-discussed revised project would result in reduced or increased impacts to these CEQA topics. As will be shown, the revised project would result in reduced project-related environmental impacts for all discussed topics. For those topics not discussed, it is noted that the revised project would similarly be expected to result in reduced impacts. For example, while not determined to be a
significant impact in the EIR due to CEQA streamlining, reducing the building height from 80 feet to 72 feet, would reduce the aesthetic effects related to the building. A reduction in retail square footage would also reduce the demand on utilities, such as water and wastewater, though impacts to these systems were determined to be less than significant in the EIR.

Air Quality

The air quality analysis within the EIR (Section 4.1, Air Quality) includes air quality emissions estimates for the operation of the proposed project, based on trip generation and vehicle miles traveled (VMT) estimates included in the project-specific traffic study prepared by Fehr & Peers. As shown in Table 4.6-12 of the EIR, the trip generation (and VMT) estimates prepared by Fehr & Peers appropriately focuses on the net new trips that would be generated by the proposed project. In other words, the existing University Mall trips, which are part of the CEQA baseline, were netted out of the trip generation and VMT estimates. As shown in Tables 1 and 2 in the Transportation section of this Appendix, a potential reduction in retail square footage down to 112,800 sf (assuming the residential units remain constant at 264 units and 622 bedrooms) would result in a reduction in vehicle trips and VMT. Given that the air quality modelling is based on trip generation and VMT inputs, it follows that the criteria pollutant emissions that would be generated by 112,800 sf of retail uses would be reduced from those estimates included in Table 4.1-8 of the EIR. It is important to note that the EIR determined the criteria pollutant emissions resulting from the original project description, with up to 136,000 sf of retail, would be below the air district’s thresholds, and thus, less-than-significant.

With respect to construction emissions, the reduced building height would result in a reduction in on-site construction activity. While not anticipated to be substantial, the reduced construction activity would result in a reduction in construction emissions from those estimated in the EIR.

Greenhouse Gas Emissions and Energy

A potential reduction in retail square footage from 136,000 sf to a low of 112,800 sf would reduce project-specific VMT, as already discussed, and shown below in Table 2 of this Appendix. Given that a project’s operational GHG emissions are largely governed by vehicle trips and VMT, reducing on-site retail square footage would result in a reduction in the project’s operational GHG emissions. However, as noted on page 4.2-21 of the EIR, the proposed project is consistent with SACOG’s Metropolitan Transportation Plan/Sustainable Communities Strategy (MTP/SCS) and is eligible for CEQA streamlining. One benefit of the CEQA streamlining process is that projects that are consistent with the MTP/SCS do not have to consider project specific or cumulative impacts involving vehicle emissions related to the project on global warming. Therefore, the EIR does not include analysis of mobile source GHG emissions. GHG emissions from all other sources, such as energy consumption, wastewater treatment, water consumption, and area sources, were considered in the EIR GHG analysis. The project would continue to be consistent with the MTP/SCS, assuming the above-discussed, potential reduction in retail square footage. Therefore, similar to the EIR, the focus of the GHG discussion is appropriately centered on GHG emissions related to non-mobile sources. A reduced retail footprint would result in a reduction in non-mobile GHG emissions due to the proportional reduction in energy demand (e.g., less space to heat and cool), lighting, need for water delivery and wastewater treatment, etc. As a result, the

1 As discussed on page 3-18 of the EIR, aesthetic and parking impacts should not be considered significant impacts on the environment for projects consistent with an adopted sustainable communities strategy (see PRC 21099(d)(1)).

revised project would result in a reduction in GHG emissions related to non-mobile sources, as compared to the original project description.

Noise
The EIR included the results of a traffic noise analysis, whereby j.c. brennan & associates, inc. estimated the increase in traffic noise levels attributable to the proposed project under the existing and cumulative traffic scenarios. The traffic noise modeling used traffic volume data provided by the project-specific traffic study prepared by Fehr & Peers. The “Plus Project” traffic volumes provided by Fehr & Peers for the traffic noise modelling included the vehicle trips attributable to the proposed project, as described in the EIR (i.e., 136,000 sf of retail and 264 residential units).\(^3\) The EIR traffic noise analysis determined that the project’s incremental contribution of traffic noise on the surrounding roadway network would not result in significant traffic noise level increases (see Tables 4.4-8 and 4.4-10 of the EIR); thus, the impact was found to be less than significant. Because a reduction in retail square footage from 136,000 sf to a potential low of 112,800 sf would result in a reduction in project-related vehicle trips, as shown in Table 1 of this Appendix, the traffic noise on the surrounding roadway network, attributable to this reduction, would similarly be reduced, as compared to the original project description.

With respect to operational noise, the findings in the EIR would be anticipated to remain the same, as a potential reduction in retail square footage due to reducing the building height, would not decrease operational noise. For example, the EIR determined that the proposed project’s operational noise would be significant within the northerly loading dock area. This impact would be expected to remain under the revised project, as loading dock activity would not be significantly reduced. Similar to the proposed project, however, the impact could be reduced to a less-than-significant level through implementation of the mitigation measures included in the EIR (Mitigation Measures 4.4-2(a) and (b)).

Transportation and Circulation
The transportation related effects of up to 136,000 sf of retail uses on-site was fully evaluated in the EIR. In order to assess the effects of the potential low end of the range of retail square footage, Fehr & Peers prepared trip generation and vehicle miles traveled (VMT) estimates for 112,800 sf of retail uses (see Attachment 1 for the complete memo prepared by Fehr & Peers). The number of on-site residential units assumed in these estimates is equivalent to the number of units identified in the EIR. It is also important to note that, similar to the EIR, these estimates appropriately focus on the net retail square increase attributable to the revised project (i.e., less the existing University Mall retail square footage), as further discussed in Attachment 1.

The below table compares the AM peak hour, PM peak hour, and daily net new vehicle trip generation of the revised project to that of the original University Commons project description analyzed in the EIR. Relative to the original University Commons project description, the revised project, containing 112,800 sf of retail, would result in a reduction of 11 AM peak hour, 46 PM peak hour, and 536 daily net new vehicles trips. Based on the below, it can be seen that reducing the retail square footage to 112,800 sf would result in a concomitant reduction in vehicle trips, and thus reduced congestion on the surrounding roadway network, as compared to amount of retail evaluated in the EIR (136,000 sf). Furthermore, it can be stated that any reduction in retail square footage within the range considered in this Appendix (112,800 sf to 136,000 sf) would result in a related reduction in vehicle trips, and thus, reduced transportation impacts.

\(^3\) As a reminder, the retail square footage used in the trip generation estimates is the net retail square footage (i.e., less the existing University Mall retail square footage).
Fehr & Peers also considered the effect on VMT related to reducing on-site retail. In order to assess the effects of the potential low end of the range of retail square footage, Fehr & Peers prepared a VMT estimate for 112,800 sf of retail uses (see Attachment 1 for the complete memo prepared by Fehr & Peers).

The below table compares the daily VMT that would be generated by 112,800 sf of retail uses (holding the residential units constant at 264 units, 622 bedrooms, 894 beds) to the original University Commons project description. Relative to the original University Commons project description, the revised project would result in a reduction of 2,702 weekday VMT and 1.7 weekday VMT per capita. As shown, the weekday VMT per capita is estimated to be 14.5 for the revised project (with 112,800 sf of retail) and 16.2 for the original project (with 136,000 sf of retail). Based on the below, it can be seen that reducing the retail square footage to 112,800 sf would result in a reduction in VMT, as compared to amount of retail evaluated in the EIR (136,000 sf). Furthermore, it can be stated that any reduction in retail square footage within the range considered in this Appendix (112,800 sf to 136,000 sf) would result in a related reduction in VMT.

Generally, the reason for this reduction in project-generated VMT is due to the reduction in vehicle trips associated with on-site retail uses, which in turn would reduce VMT (VMT is calculated by multiplying vehicle trips by average trip length). Similarly, the reduction in VMT per capita is due to the reduction in VMT and employees associated with on-site retail uses. For the purposes of this project, VMT per capita is expressed as a weighted average of VMT and residents/employees associated with the residential and commercial components of the project. The residential component would generate a lower VMT per capita than the commercial component. Thus, a reduction in the size of the commercial component (and its share of the overall project) would result in an associated reduction in the VMT per capita weighted average calculation.
Conclusion
This Appendix demonstrates that a revised project, containing anywhere from 136,000 sf to 112,800 sf of retail uses, and assuming the same amount of residential units, bedrooms, and beds, would result in reduced environmental impacts when compared to the original project description evaluated in the EIR. No new significant environmental impacts would result, nor would a previously identified significant impact be substantially increased in severity. Thus, recirculation of the EIR would not be required under CEQA Guidelines Section 15088.5.

The environmental analysis contained within the EIR is adequate for purposes of fully evaluating the physical environmental impacts associated with a project containing a range of on-site retail from 112,800 to 136,000 sf, and up to 264 residential units, with 622 bedrooms and up to 894 beds.

<table>
<thead>
<tr>
<th>Category</th>
<th>Weekday VMT</th>
<th>Weekday VMT per Capita¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Retail Scenario</td>
<td>13,793</td>
<td>14.5</td>
</tr>
<tr>
<td>Original Project Description</td>
<td>16,495</td>
<td>16.2</td>
</tr>
<tr>
<td>Difference</td>
<td>-2,702</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

Notes:
¹ For the purposes of this analysis, “capita” represents service population (i.e., residents plus employees). Service population calculated as follows: Reduced Retail Scenario = 894 residents + 55 employees (at 275 square feet per retail employee) = 949 service population Original Project Description = 894 residents + 125 employees = 1,019 service population
MEMORANDUM

Date: August 20, 2020
To: Nick Pappani, Raney Planning & Management
From: Greg Behrens, AICP, Fehr & Peers
Subject: University Commons Project Reduced Retail Scenario Trip Generation

This memorandum summarizes the estimated trip generation of a reduced retail scenario for the proposed University Commons project. This scenario assumes the construction of 112,800 square feet of new retail space, excluding the existing Trader Joe’s. For comparison, the project description analyzed in the University Commons EIR assumed the construction of 136,800 square feet of new retail space, excluding the existing Trader Joe’s. Overall, the reduced retail scenario would result in 24,000 square feet less retail space at the project site compared to the original University Commons project description.

Trip Generation

Daily, AM peak hour, and PM peak hour trip generation estimates for the reduced retail scenario were derived utilizing the same methodology documented in the January 4, 2019 technical memorandum entitled University Mall Redevelopment Project Travel Characteristics.

Table 1 summarizes the expected peak hour trip generation of the project commercial component under the reduced retail scenario, controlling for the trip generation of the existing retail uses (or equivalents) that would remain on-site as part of the project.

Table 2 summarizes the estimated daily, AM peak hour, and PM peak hour, and daily vehicle trip generation for the combined residential and commercial components of the project under the reduced retail scenario, less the trip generation of the existing University Mall. When accounting for vehicle trips currently generated by the existing University Mall, the project would generate an estimated 85 AM peak hour, 198 PM peak hour, and 2,829 daily gross vehicle trips beyond what University Mall currently generates today.

Table 3 summarizes the estimated project AM peak hour, PM peak hour, and daily net new vehicle trip generation resulting from pass-by trip adjustments. Pass-by trips are trips already on the network that are diverted to and from a commercial or retail land use, and therefore would not be considered as new trips generated by the project. The pass-by trip adjustments represent 34 percent of the gross increase in project vehicle trips attributed to the project commercial component only. This adjustment factor is based on data provided in the ITE Trip Generation Handbook for shopping center land uses. When accounting for pass-by trips, the project would generate an estimated 80 AM peak hour, 162 PM peak hour, and 2,442 daily net new vehicle trips. These figures represent the total new vehicle trips generated by the project that would be added to the surrounding roadway network.
Table 1

Project Commercial Component – Reduced Retail Scenario – Vehicle Trip Generation

<table>
<thead>
<tr>
<th>Category</th>
<th>Occupied KSF</th>
<th>AM Peak Hour Total</th>
<th>AM Peak Hour In</th>
<th>AM Peak Hour Out</th>
<th>PM Peak Hour Total</th>
<th>PM Peak Hour In</th>
<th>PM Peak Hour Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trader Joe’s¹</td>
<td>13.200</td>
<td>179</td>
<td>92</td>
<td>87</td>
<td>505</td>
<td>255</td>
<td>250</td>
</tr>
<tr>
<td>Starbucks or Equivalent²</td>
<td>1.435</td>
<td>141</td>
<td>73</td>
<td>68</td>
<td>86</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>Remaining Retail Uses³</td>
<td>111.365</td>
<td>121</td>
<td>91</td>
<td>30</td>
<td>462</td>
<td>259</td>
<td>203</td>
</tr>
<tr>
<td>Project Commercial Component</td>
<td>126.000</td>
<td>441</td>
<td>256</td>
<td>185</td>
<td>1,053</td>
<td>555</td>
<td>498</td>
</tr>
</tbody>
</table>

Notes:

1. Derived from existing University Mall Trader Joe’s observed peak hour vehicle trip generation.
2. Derived from existing University Mall Starbucks observed peak hour vehicle trip generation. While the current project description does not explicitly include a Starbucks, the existing University Mall Starbucks is successful, and it or an equivalent coffee shop use would presumably be included as an element of the redeveloped University Mall.
3. Calculated as follows based on the adjusted vehicle trip rates to reflect increased internal trips associated with larger shopping center size:

 - **AM Peak Hour**: \(T = 1.09(X) \), with 75% inbound and 25% outbound.
 - **PM Peak Hour**: \(T = 4.15(X) \), with 56% inbound and 44% outbound.

Where \(T \) = trip ends and \(X \) = occupied KSF.

Table 2

University Commons Project – Reduced Retail Scenario – Vehicle Trip Generation

<table>
<thead>
<tr>
<th>Category</th>
<th>Units</th>
<th>Daily Total</th>
<th>AM Peak Hour Total</th>
<th>AM Peak Hour In</th>
<th>AM Peak Hour Out</th>
<th>PM Peak Hour Total</th>
<th>PM Peak Hour In</th>
<th>PM Peak Hour Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Component</td>
<td>622 bedrooms</td>
<td>1,690</td>
<td>69</td>
<td>20</td>
<td>49</td>
<td>93</td>
<td>39</td>
<td>54</td>
</tr>
<tr>
<td>Commercial Component</td>
<td>126.000 occ. KSF</td>
<td>13,574</td>
<td>441</td>
<td>256</td>
<td>185</td>
<td>1,053</td>
<td>555</td>
<td>498</td>
</tr>
<tr>
<td>Project Total (Gross)</td>
<td>15,264</td>
<td>510</td>
<td>276</td>
<td>234</td>
<td>1,146</td>
<td>594</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td>Existing University Mall</td>
<td>96.436 occ. KSF¹</td>
<td>-12,435</td>
<td>-425</td>
<td>-244</td>
<td>-181</td>
<td>-948</td>
<td>-495</td>
<td>-453</td>
</tr>
<tr>
<td>Project Total (Gross Increase)</td>
<td>2,829</td>
<td>85</td>
<td>32</td>
<td>53</td>
<td>198</td>
<td>99</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. Includes existing Trader Joe’s and all other occupied space at the existing University Mall.

University Commons Project Reduced Retail Scenario Trip Generation

Table 3
University Commons Project – Reduced Retail Scenario – Pass-By Trip Adjustment

<table>
<thead>
<tr>
<th>Category</th>
<th>Daily Total</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>In</td>
</tr>
<tr>
<td>Project Total (Gross Increase)</td>
<td>2,829</td>
<td>85</td>
<td>32</td>
</tr>
<tr>
<td>Project Total (Pass-By)¹</td>
<td>-387</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>Project Total (Net Increase in New Trips)²</td>
<td>2,442</td>
<td>80</td>
<td>28</td>
</tr>
</tbody>
</table>

Notes:
¹ Calculated as 34 percent of the gross increase in project vehicle trips attributed to the project commercial component only.
² Represents the total new vehicle trips generated by the project that would be added to the surrounding roadway network.

Table 4 compares the AM peak hour, PM peak hour, and daily net new vehicle trip generation of the reduced retail scenario to that of the original University Commons project description analyzed in the EIR. Relative to the original University Commons project description, the reduced retail scenario would result in a reduction of 11 AM peak hour, 46 PM peak hour, and 536 daily net new vehicles trips.

Table 4
University Commons Project – Reduced Retail Scenario – Net New Trip Comparison

<table>
<thead>
<tr>
<th>Category</th>
<th>Daily Total</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>In</td>
</tr>
<tr>
<td>Reduced Retail Scenario</td>
<td>2,442</td>
<td>80</td>
<td>28</td>
</tr>
<tr>
<td>Original Project Description</td>
<td>2,978</td>
<td>91</td>
<td>37</td>
</tr>
<tr>
<td>Difference</td>
<td>-536</td>
<td>-11</td>
<td>-9</td>
</tr>
</tbody>
</table>

Vehicle Miles Traveled

Table 5 compares the daily vehicle miles traveled (VMT) that would be generated by the reduced retail scenario compared to the original University Commons project description. Relative to the original University Commons project description, the reduced retail scenario would result in a reduction of 2,702 weekday VMT and 1.7 weekday VMT per capita.
Table 5

<table>
<thead>
<tr>
<th>Category</th>
<th>Weekday VMT</th>
<th>Weekday VMT per Capita¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Retail Scenario</td>
<td>13,793</td>
<td>14.5</td>
</tr>
<tr>
<td>Original Project Description</td>
<td>16,495</td>
<td>16.2</td>
</tr>
<tr>
<td>Difference</td>
<td>-2,702</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

Notes:

¹ For the purposes of this analysis, “capita” represents service population (i.e., residents plus employees). Service population calculated as follows:

- Reduced Retail Scenario = 894 residents + 55 employees (at 275 square feet per retail employee) = 949 service population
- Original Project Description = 894 residents + 125 employees = 1,019 service population

Summary

Overall, the reduced retail scenario would result in fewer net new vehicle trips and less VMT and VMT per capita than the original University Commons project description. Accordingly, the reduced retail scenario would not result in new significant transportation impacts beyond those disclosed in the University Commons EIR, including impacts to VMT and vehicle delay/level of service (LOS).