ALL SHEDS- VEGETATED SWALE

Site Element	Unit Area (ac)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Roof/Asphalt/concrete	43	100	0.568	57
Lawn/turf	23	0	0.302	0
Mixed use	10	80	0.130	10
Total Contributing Area ^(a)	75	-	_	67

Calculation Table for Determination of Design Imperviousness (Iwq)

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

Swale Calculations

Shed Area	75.26 ac
Intensity	0.2 in/hr
С	0.47
n	0.2
Qdesign=	7.05 cfs

swale bottom width		0	ft
side slope		3	:1
design slope		0.0005	ft/ft
Design flow velocity		0.52	ft/sec
Flow Depth		2.64	ft
Required Design Length		312	ft
Provided Design Length		1510	ft
Check Swale Length	Ok		

Notes:

C = runoff coefficient=0.858 $(I_{WQ})^3$ - 0.78 $(I_{WQ})^2$ + 0.774 (I_{WQ}) + 0.04

Intensity determined as 2X the 85th percentile hourly

Rainfall intensity (City of Woodland rain gauge = 0.10 in/hr)

Design length calculated using the 10 min. minimum contact

Design Length = Contact Time (min) x Design Flow Velocity x 60 (sec/min)