SHED A- VEGETATED SWALE

Calculation Table for	Determination	of Design	Imperviousness	(lwo)
				1-1/07

Site Element	Unit Area (ft ²)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Asphalt/concrete pavement	17,053	100	0.673	67
Roofs	1,075	90	0.042	4
Lawn/turf	7,215	0	0.285	0
Total Contributing Area ^(a)	25,342	_	_	71

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

e. Variable with product type; assumes porous subsoil and use of underdrains

Swale Calculations

Shed Area Intensity C n Qdesign=	0.58 ac 0.2 in/hr 0.50 0.2 0.059 cfs	
swale bottom width side slope design slope Design flow velocity Flow Depth Design Length Length per plan	0.5 ft 3 :1 0.005 ft/ft 0.16 ft/sec 3.24 in 96 ft 96 ft	from flowmaster from flowmaster

Check Swale Length Ok

Notes:

Design length calculated using the 10 min. minimum contact Design Length = Tc x Design Flow Velocity x 60 Intensity determined as 2X the 85th percentile hourly Rainfall intensity (City of Woodland rain gauge = 0.10 in/hr) Q_{design} = C x I x A Storm Quality Design Flow (SQDF) C = runoff coefficient=0.858 $(I_{WO})^3$ - 0.78 $(I_{WO})^2$ + 0.774 (I_{WO}) + 0.04

SHED B- PERVIOUS PAVEMENT

Site Element	Unit Area (ft ²)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Asphalt/concrete pavement	8,304	100	0.603	60
Gravel pavement	0	40	0.000	0
Roofs	0	90	0.000	0
Porous pavement ^(e)	1,726	35	0.125	4
Lawn/turf	3,737	0	0.271	0
Total Contributing Area ^(a)	13,767	-	-	65

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

e. Variable with product type; assumes porous subsoil and use of underdrains

Pervious Pavers-

Shed Area:	0.32 ac
C	0.45
desired capture (for 48 hr storm)	80%
Voids:	30%

Vu (in) [From graph on page

333 of CASQA BMP Handbook,			Required Media	
48-hr drawdown]	V (cf)	Design Surface Area (sf)	Depth (in)	Provided Media Depth (in)
0.32	367	1,726	8.51	9

Notes:

Calculations based on section 5.5 of the California Stormwater BMP Handbook, dated January 2003 per section E.12.e(ii),(c)2 of the State General Permit, dated February 5, 2013.

V=Required Capture Volume (cf)

Vu=Unit Basin Storage Volume (in) (from graph on page 333 of CASQA BMP Handbook)

I_{WQ} =Design Imperviousness

C = runoff coefficient=0.858 $(I_{WQ})^3$ - 0.78 $(I_{WQ})^2$ + 0.774 (I_{WQ}) + 0.04

storage depth is based on 30% void space

SHED C- STORMWATER PLANTER

Site Element	Unit Area (ft ²)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Asphalt/concrete pavement	11,808	100	0.66	66
Roofs	0	90	0.00	0
Lawn/turf	6,102	0	0.34	0
Total Contributing Area ^(a)	17,910	-	-	66

Calculation Table for Determination of Design Imperviousness (I_{wq})

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

Rain Garden Calculations

Shed Area:	0.41 ac
C	0.46
desired capture (for 48 hr storm)	80%

Vu (in) [From graph on page

333 of CASQA BMP Handbook,

48-hr drawdown]	Required V (cf)	Design V (cf)
0.32	478	487

Notes:

Calculations based on section 5.5 of the California Stormwater BMP Handbook, dated January 2003 per section E.12.e(ii),(c)2 of the State General Permit, dated February 5, 2013.

V=Required Capture Volume (cf)

Vu=Unit Basin Storage Volume (in) (from graph on page 333 of CASQA BMP Handbook) I_{wo} =Design Imperviousness

C = runoff coefficient=0.858 $(I_{WQ})^3$ - 0.78 $(I_{WQ})^2$ + 0.774 (I_{WQ}) + 0.04

Vu=Unit Basin Storage Volume (in) (from graph on page 333 of CASQA BMP Handbook)

SHED D- PERVIOUS PAVEMENT

Site Element	Unit Area (ft ²)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Asphalt/concrete pavement	19,747	100	0.440	44
Gravel pavement	492	40	0.011	0
Roofs	10,310	90	0.230	21
Porous pavement ^(e)	6,823	35	0.152	5
Lawn/turf	7,517	0	0.167	0
Total Contributing Area ^(a)	44,888	_	_	70

Calculation Table for Determination of Design Imperviousness (I_{wq})

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

e. Variable with product type; assumes porous subsoil and use of underdrains

Pervious Pavers-

Shed Area:	1.03 ac
С	0.50
desired capture (for 48 hr storm)	80%
Voids:	30%

Vu (in) [From graph on page

333 of CASQA BMP Handbook,		Design Surface Area	Required Media	Provided Media
48-hr drawdown]	V (cf)	(sf)	Depth (in)	Depth (in)
0.36	1,347	6,823	7.9	8

Notes:

Calculations based on section 5.5 of the California Stormwater BMP Handbook, dated January 2003 per section

E.12.e(ii),(c)2 of the State General Permit, dated February 5, 2013.

V=Required Capture Volume (cf)

Vu=Unit Basin Storage Volume (in) (from graph on page 333 of CASQA BMP Handbook)

I_{wq} =Design Imperviousness

C = runoff coefficient=0.858 $(I_{WQ})^3 - 0.78 (I_{WQ})^2 + 0.774 (I_{WQ}) + 0.04$

storage depth is based on 30% void space

SHED E- PERVIOUS PAVEMENT

Site Element	Unit Area (ft ²)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Asphalt/concrete pavement	19,353	100	0.463	46
Gravel pavement	799	40	0.019	1
Roofs	9,294	90	0.222	20
Porous pavement ^(e)	4,417	35	0.106	4
Lawn/turf	7,938	0	0.190	0
Total Contributing Area ^(a)	41,801	-	-	71

Calculation Table for Determination of Design Imperviousness (Iwo)

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

e. Variable with product type; assumes porous subsoil and use of underdrains

Pervious Pavers-

Shed Area:	0.96 ac
C	0.50
desired capture (for 48 hr storm)	80%
Voids:	30%

Vu (in) [From graph on page				
333 of CASQA BMP Handbook,		Design Surface Area	Required Media	Provided Media
48-hr drawdown]	V (cf)	(sf)	Depth (in)	Depth (in)
0.36	1,254	4,417	11	11

Notes:

Calculations based on section 5.5 of the California Stormwater BMP Handbook, dated January 2003 per section E.12.e(ii),(c)2 of the State General Permit, dated February 5, 2013.

V=Required Capture Volume (cf)

Vu=Unit Basin Storage Volume (in) (from graph on page 333 of CASQA BMP Handbook)

I_{WQ} =Design Imperviousness

C = runoff coefficient=0.858 $(I_{WQ})^3$ - 0.78 $(I_{WQ})^2$ + 0.774 (I_{WQ}) + 0.04

storage depth is based on 30% void space

SHED F- STORMWATER PLANTER

Site Element	Unit Area (ft ²)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Asphalt/concrete pavement	11,662	100	0.446	45
Roofs	0	90	0.000	0
Lawn/turf	14,504	0	0.554	0
Total Contributing Area ^(a)	26,166	_	-	45

Calculation Table for Determination of Design Imperviousness (I_{wq})

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

Rain Garden Calculations

Shed Area:	0.60 ac
C	0.31
desired capture (for 48 hr storm)	80%

Vu (in) [From graph on page

333 of CASQA BMP Handbook,

48-hr drawdown]	Required V (cf)	Design V (cf)
0.22	480	505

Notes:

Calculations based on section 5.5 of the California Stormwater BMP Handbook, dated January 2003 per section E.12.e(ii),(c)2 of the State General Permit, dated February 5, 2013.

V=Required Capture Volume (cf)

Vu=Unit Basin Storage Volume (in) (from graph on page 333 of CASQA BMP Handbook) I_{WQ} =Design Imperviousness

C = runoff coefficient=0.858 $(I_{WQ})^3$ - 0.78 $(I_{WQ})^2$ + 0.774 (I_{WQ}) + 0.04

Vu=Unit Basin Storage Volume (in) (from graph on page 333 of CASQA BMP Handbook)

SHED G- VEGETATED SWALE

Site Element	Unit Area (ft ²)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Asphalt/concrete pavement	6,996	100	0.226	23
Pool	1856	100	0.060	6
Roofs	16,933	90	0.547	49
Lawn/turf	5,190	0	0.168	0
Total Contributing Area ^(a)	30,976	_	_	78

Calculation Table for Determination of Design Imperviousness (Iwo)

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

e. Variable with product type; assumes porous subsoil and use of underdrains

Swale Calculations

Shed Area	0.71 ac
Intensity	0.2 in/hr
С	0.57
n	0.2
Qdesign=	0.082 cfs

swale bottom width	1 ft	
side slope	3 :1	
design slope	0.005 ft/ft	
Design flow velocity	0.17 ft/sec	from flowmaster
Flow Depth	3.24 in	from flowmaster
Design Length	102 ft	
Length per plan	108 ft	

Check Swale Length Ok

Notes:

Design length calculated using the 10 min. minimum contact Design Length = Tc x Design Flow Velocity x 60 Intensity determined as 2X the 85th percentile hourly Rainfall intensity (City of Woodland rain gauge = 0.10 in/hr) Q_{design} = C x I x A Storm Quality Design Flow (SQDF) C = runoff coefficient=0.858 $(I_{WQ})^3 - 0.78 (I_{WQ})^2 + 0.774 (I_{WQ}) + 0.04$

SHED H- VEGETATED SWALE

Site Element	Unit Area (ft ²)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Asphalt/concrete pavement	6,840	100	0.336	34
Pool	2100	100	0.103	10
Roofs	7,986	90	0.393	35
Lawn/turf	3,412	0	0.168	0
Total Contributing Area ^(a)	20,337	_	_	79

Calculation Table for Determination of Design Imperviousness (${\rm I}_{\rm WQ}$)

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

e. Variable with product type; assumes porous subsoil and use of underdrains

Swale Calculations

Shed Area	0.47 ac			
Intensity	0.2 in/hr			
C	0.59			
n	0.2			
Qdesign=	0.055 cfs			
swale bottom width	1 ft			
side slope	3 :1			
design slope	0.005 ft/ft			
Design flow velocity	0.15 ft/sec	from flowmaster		
Flow Depth	3.24 in	from flowmaster		
Design Length	90 ft			
Length per plan	90 ft			
Check Swale Length Ok				
Notes:				
Design length calculated using	g the 10 min. minimu	m contact		
	 Design Flow Velocit 			
Intensity determined as 2X th Rainfall intensity	•	urly ain gauge = 0.10 in/hr)		
$Q_{design} = C \times I \times A$	(,			
Storm Quality Design Flow (SC	QDF)			
C = runoff coefficient=0.858 $(I_{wo})^3 - 0.78 (I_{wo})^2 + 0.774 (I_{wo}) + 0.04$				
	ως,			

SHED I- STORMWATER PLANTER

Site Element	Unit Area (ft ²)	Percent Imperviousness	Weighting Factor ^(b)	Weighted % Imperviousness ^(c,d)
Asphalt/concrete pavement	6,260	100	0.200	20
Roofs	11,664	90	0.373	34
Lawn/turf	13,384	0	0.427	0
Total Contributing Area ^(a)	31,307	-	-	54

Calculation Table for Determination of Design Imperviousness (Iwq)

a. Total contributing area = sum of unit areas

b. Weighting factor = unit area / total tributary area

c. Weighted imperviousness = weighting factor x percent imperviousness

d. Design imperviousness = sum of weighted imperviousness

Rain Garden Calculations

Shed Area:	0.72 ac
C	0.36
desired capture (for 48 hr storm)	80%

Vu (in) [From graph on page

333 of CASQA BMP Handbook,

48-hr drawdown]	Required V (cf)	Design V (cf)
0.25	652	690

Notes:

Calculations based on section 5.5 of the California Stormwater BMP Handbook, dated January 2003 per section E.12.e(ii),(c)2 of the State General Permit, dated February 5, 2013.

V=Required Capture Volume (cf)

Vu=Unit Basin Storage Volume (in) (from graph on page 333 of CASQA BMP Handbook) I_{wQ} =Design Imperviousness

C = runoff coefficient=0.858 $(I_{WQ})^3$ - 0.78 $(I_{WQ})^2$ + 0.774 (I_{WQ}) + 0.04

Vu=Unit Basin Storage Volume (in) (from graph on page 333 of CASQA BMP Handbook)